
An Algorithm for the Filtering and Classification of CSI

Data-sets

Ryan Lanciloti
Email: ryanjl9@iastate.edu

November 12, 2021

mailto:ryajl9@iastate.edu

CONTENTS CONTENTS

Contents

1 Preface 2

2 Background 2
2.1 The End Goal (a.k.a The Problem that Needs a Solution) 2
2.2 The Current Approach . 2
2.3 The Problem (Or What I Think the Problem is) 3

3 The Algorithm 6
3.1 Introduction . 6
3.2 Getting the Variance of Our Data . 6
3.3 Classification (a.k.a The Hard Problem) . 7
3.4 Conclusion/Summary . 9

4 Approaches to Classification 10

5 Short Comings 10

6 Conclusion 11

1

2 BACKGROUND

1 Preface

The purpose of this paper is to articulate the methodology behind an algorithm that I, Ryan
Lanciloti, have devised to increase the accuracy of state classification in the system described
later on in the paper. By the end of the paper, you, the reader, should have an understanding
of what the over-arching problem is, why we haven’t solved this problem as of yet, what my
algorithm does, how it’s supposed to solve the over-arching problem, how it might fail to solve
the over-arching problem, and why I don’t of a good way to implement this algorithm.

2 Background

2.1 The End Goal (a.k.a The Problem that Needs a Solution)

What is it that we are trying to do in the first place? We want to develop a system that allows
us to classify the current state of a door. Another way to phrase the problem statement is that
we want to use CSI data to determine the current position of a door. The important points
here are the mention of CSI and the mention of state/position.

What is CSI? CSI, also known as Channel State Information, is a property of WiFi radio waves
which provides us with information about the path a wave took to reach a receiver. How it
works is that there are a certain number of sub-carriers associated with a given transmitter, for
our system, it’s 53 sub-carriers, and each sub-carrier relays it’s phase and magnitude when it
reaches the receiver. The theory is that as a wave propagates through a room, it will bounch
off of the objects in said room. As it does this, it will cause a phase shift and a change in
overall magnitude. With 53 different sub-carriers, each reflecting off of the objects in a room in
different ways, we can use this data to do basic object detection.

The idea of ”door state” is simple in concept, however I feel the need to provide a concrete
definition as to what it means in relation to our problem. Door state refers to the position of a
door with relation to it’s frame, and it’s extends past a simple open and closed. When I state
that we want to detect door state, I mean to say that we want to determine that approximate
angle at which the door is currently open to. We use 7 discrete values, 0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦.

So to restate the problem statement one last time, essentially we want to use WiFi wave
propagation throughout a room to determine the angle at which a door is open to with relation
to it’s frame.

2.2 The Current Approach

Our current setup is as follows: There’s a sender ESP32 and a Receiver ESP32, the sender is
transmitting the WiFi radio waves and the receiver is listening for these waves.

2

2.3 The Problem (Or What I Think the Problem is) 2 BACKGROUND

Figure 1: Environment Setup

In figure 1, there is a basic diagram of the setup. Real simple, there’s a door and the two
ESP32s. Once the receiver receives the radio wave, it extracts out the phase and magnitude
from the 53 sub-carriers and sends this information off to a back-end. The back-end is
comprised of a flask server acting as an API and a machine learning model. The flask server
passes this information on to the machine learning model to do inference on the data which is
collected. This inference produces a confidence level for each of the 7 discrete possible states
which tells us the percent chance it’s in any given state.

To train the model, we build up a training data-set. The general flow for building this set is as
follows: we open the door up to one of the discrete degree markers, we gather points for 3
minutes, and then we move to the next discrete degree marker. After labeling each data point
in the training set, (i.e. we label all the data points for 0◦, 15◦, etc.) we feed this training set
into the model to fit the data-set. The theory is that when the door is in each of it’s discreet
states, the incoming data should match that of the training data, and we should therefore be
able to determine the current door state.

2.3 The Problem (Or What I Think the Problem is)

In order for the above approach to work, the data at each discreet degree marker must be
unique with regards to the other discreet degree markers. The theory behind CSI allows us to
infer that as objects in a room change, some portion of 53 sub-carriers should reflect this
change. So what happens in our system? When the system is at rest, we experience a high
amount of fluctuation in the output of our machine learning model. One second it thinks the
closed door is open to 75◦, the next it thinks it’s open to 15◦. Why do we see such high
volatility in the output of our model inference if the system isn’t changing?

To answer this question, we have to look a little more closely at our model. We are using a
Deep Neural Network, DNN for short. A DNN is comprised of a series of nodes, each with
weights and biases, with multiple convolutional layers that do some sort of mathematical

3

2.3 The Problem (Or What I Think the Problem is) 2 BACKGROUND

calculation on an input value and returns the output. Each layer acts as the input to the next
with the first layer receiving the raw CSI data as input. To train a DNN, you pass in a data set
with a known expected output and depending on the actual output of the DNN, you adjust the
weights and biases of the nodes in each convolutional layer to provide a more accurate guess.
For our system, the theory is that if we pass a 100 points data points, each for 0◦, the DNN
should learn to identify these data points by their statistical similarity. In our system, each
data point has 106 fields (53 phase and 53 magnitude) associated with it.

There ends up being two main issues with the data-set, lack of distinction between the degree
marker sets and high volatility within each of the degree marker sets. For lack of distinction,
let’s look at genomes. According to this article, humans share approximately 99% of their
DNA with gorillas. If we were to train a DNN to identify whether something was human or a
gorilla by feeding it a genome, we’d find that we’d have a very difficult time increasing our
accuracy if we feed it the whole genome. This is because 99% of the data is exactly the same
and therefore, it would be unlikely that the model would find any statistical difference between
the two. For a more tangible example, take the real Monalisa painting and a fake Monalisa
painting. If the only difference between the two paintings is that the fake uses the wrong shade
of green in the background, any random person would have a hard time identifying that.
However, if we cut out only the backgrounds of both and compared them, it would be
significant easier to identify difference between the two paintings. Looking back to the genome
example, if we stripped out portions of the two genomes that we know are going to be exactly
the same, we’d see a higher percentage of distinction between the human and gorilla genomes.
This means that our DNN would have an easier time identifying the difference between the two
and this would increase the overall model accuracy.

Now let’s look at the second issue, high volatility within a degree marker set. To do this, let’s
look at colors, specifically red, orange, and yellow. Most people can identify the difference
between these three colors, however these same people may have issues identifying at what
point a red becomes orange and at what point orange becomes yellow. In fact, depending on
who you ask, these discrete color boundaries change; one person may identify one color as red,
another will say it’s orange. This is what happens when our data has too high volatility within
each degree marker set. It becomes harder to put a discrete bound on our degree marker sets
because a higher volatility means that we have to span a larger bound for a particular data field

4

https://www.scientificamerican.com/article/tiny-genetic-differences-between-humans-and-other-primates-pervade-the-genome/

2.3 The Problem (Or What I Think the Problem is) 2 BACKGROUND

Figure 2: Color Wheel Example

Figure 2 is meant to show what happens when we combine lack of distinction between sets and
high volatility within sets. Shown are two color wheels, one with lines drawn roughly (I am
color blind so please be forgiving) between yellow, red, and orange shown on the left, and one
with discrete ranges drawn for each of the three colors shown on the right. With the color
wheel on the left, if we’re near a boundary, there’s a higher level of uncertainty as to what
color we’re actually looking at. The distinction between the colors is low and because of high
volatility in each color data set, we have such large ranges for what is classified as red, yellow,
and orange (in actuality, there is probably overlap between each bound meaning it can be
either (red or orange)/(orange or yellow)). However on the right, we see distinct regions for the
three colors. Because of high distinction within each set, it’s clear to see where the boundaries
exist for each color, and because of low volatility, we have very narrow bands for each color.

Now the color wheel on the right might upset some people because now we have portions of the
wheel which are ignored, yet still represent a color. We begin to ask ourselves, ”what happens
when the DNN receives a point within these shaded regions?”, and hopefully the model will
produce a low confidence level for any one classification and thus we can ignore it. The idea is
that our model will provide high confidence values in the non-shaded regions and low
confidence in shaded regions, and if any one confidence level doesn’t go above a certain
threshold, we maintain our current prediction.

So in summary, our issue is that our model looks more like the color wheel on the left-hand
side. In actuality, it probably looks like this:

Figure 3: Colors as Bars w/ Overlap

Where the range which defines one color overlaps very heavily with every other color.

5

3 THE ALGORITHM

3 The Algorithm

3.1 Introduction

Assuming you’ve read the background section, you’ve probably determined that this algorithm
would give us something like the ”small bounds” color wheel; and you’d be right. The
algorithm I’ve thought up works in two main parts: filtering and classifying. Spoiler alert,
filtering is the easy part. Filtering will seek to decrease overall volatility within the degree
marker sets by removing fields within a degree marker set which have high variation.
Classifying will involve selecting fields within a degree marker set which uniquely identify said
degree marker set. It should be noted that these aren’t discrete parts, filtering happens
because of the classification.

3.2 Getting the Variance of Our Data

For clarification, a degree marker set is a set of data points for any given degree (i.e. 100
data points for 0◦would be a degree marker set of size 100). A data point has 106 fields (53
for phase, 53 for magnitude). The first step is determining the volatility for every field in a
degree marker set. Every data point has the same fields which means that we are determining
the volatility of 106 fields for each degree marker set. The best way I can think to do this is
through variance and standard deviation.

0◦

f1 f2 f3 f4 f5
p1 1 10 4 30 8
p2 2 20 3 15 12
p3 3 30 6 14 14
p4 2 20 8 20 13
p5 3 40 10 16 12
Mean 2.2 24 6.2 19 11.8
Variance 0.56 104 6.56 34.4 4.16
Stand Deviation 0.748331 10.19804 2.56125 5.865151 2.039608

15◦

f1 f2 f3 f4 f5
p1 6 15 9 50 9
p2 7 22 7 25 13
p3 8 33 10 34 15
p4 7 25 12 40 14
p5 8 44 15 36 13
Mean 7.2 27.8 10.6 37 12.8
Variance 0.56 98.96 7.44 66.4 4.16
Stand Deviation 0.748331 9.947864 2.727636 8.14862 2.039608

Table 1: Standard Deviation/Variance Example

In the above table is an example the first part of the algorithm. Here we have two degree

6

3.3 Classification (a.k.a The Hard Problem) 3 THE ALGORITHM

marker sets, 0◦and 15◦, also there are only 5 fields and 5 data points. While it may be
tempting to strip out any field that has high variance, this may strip out useful information
from the next step. Example: Assume at 0◦, one field oscillates between 0 and 100, but at 15◦

it oscillates between 200 and 300. There exists a high variance but they’re distinct.

3.3 Classification (a.k.a The Hard Problem)

This is where things get difficult, we need to pick fields that map to a certain degree marker
set. To me, this screams a greedy, recursive algorithm. It’s greedy because, for each degree
marker set, we sort the fields by variation, smallest to largest. If we take a field, and give it a
width equal to 4 ∗ σ, and we give it a set point at it’s mean, then we can determine how unique
a field is inside of a degree marker set in comparison to the other degree marker sets.

Figure 4: Variance vs Uniqueness

In the image above, there are 4 difference scenarios. The first is when there’s low variance and
the means, the set points, are far apart. For clarity sake, we’ll say that the top line is field 1 for
0◦ and the bottom line is field 1 for 15◦. If we state the the left and right bounds of the box
are both two standard deviations away from the set point, we can say that for this field, if a
point falls within the rectangle on the top line, that the door is at 0◦ and if it falls withing the
rectangle on the bottom line, that the door is at 15◦. The seconds scenario (low variance but
similar means) illustrates that low variance doesn’t always mean we can assume no overlap
with other degree marker sets. However, I’d argue that it’s more useful to check low variance
fields first as these fields will have a better chance of being unique between data marker sets.
Scenario 3 illustrates that we can have high variance but that overlap may not exist between
two data marker sets. Finally, scenario 4 shows what I think is most common, high variance
and lots of overlap. In our filtering step, we’re going to remove/ignore fields which exhibit
behaviors specified in scenario 2 and 4 as these are noisy. Ideally, we’ll also want to cut down
the number of scenario 3 fields we look at as this would increase the similarity of the data
points within a degree marker set.

7

3.3 Classification (a.k.a The Hard Problem) 3 THE ALGORITHM

So if we go through and calculate the variance of each field within a degree marker set and we
find that we have lots of scenario 1 fields, great, super easy. However I think the following
scenario is more likely:

Figure 5: Classification Example

In figure 5, I’ve written out the sets for angles 0-75 for the first 4 fields. With this data set, we
should be able to come up with fields and values to determine when the door is at any of the
discrete angles. If we consider field 1, then if a data point comes in with a field value that falls
within the 0◦ box or the 45◦ box, we can assume that it’s either 0◦ or 45◦. Similar things can
be said about 30◦, 60◦, and 75◦. But how about 15◦?

This is where things get difficult. We can identify 15◦ if in field 1, it doesn’t overlap with
degree marker set 0’s field 1 AND if in field 2, it doesn’t overlap with degree marker set 30’s
field 2. There is an easy-ish approach to solving this problem though. Essentially if there is
overlap for a n-given degree marker sets in a given field, we can look at all other fields for those
n-given degree mark sets and if there is another field where overlap doesn’t exist, then we can
associate those two fields together. However, there’s a caveat: fields are strongly related to one

8

3.4 Conclusion/Summary 3 THE ALGORITHM

another. This means that every place where field 1 has the value 30, there’s a good chance the
field 2 will have a very similar value each time. Because of this, we can only looks at points
which meet the first fields criteria.

Figure 6: Recursive Search Example

So figure 6 should illustrate this a little better. Essentially, when we calculate the variation,
standard deviation, and mean for field 1 and field 2, we see that there exists a high amount of
overlap for both degree marker sets in both fields, however if we set the criteria that we allow
for a overlap between the two sets in field one, then we should re-evaluate all the points which
fall within that range. So for clarity sake, we look at the training data set (let’s say it’s a 100
points for each degree marker set) and we only look at the data points where field 1 falls within
the bounds shown in the image. We do this for degree marker sets 0 and 15, and we recompute
the mean, variance, and standard deviation for each of the fields using those data points. We
may now find that there’s significantly less variance and significantly more uniqueness between
the two sets.

3.4 Conclusion/Summary

So to summarize the algorithm, we determine the variance of each field in a degree marker set,
we look for unique entries for each degree marker set. If we can’t find them, we select a field
which we allow overlap and re-evaluate all the points which meet that field’s criteria and hope
for unique entries. Once we have the fields we want to look for, we ignore all other fields. By
ignoring the other fields, we reduce overall noise (the Monalisa example) and increase the
amount of unique data in the system. By making note of the fields that don’t overlap, we now
have a way to classify any given point (at this point I wonder if we even need a DNN to classify
the data points).

9

5 SHORT COMINGS

4 Approaches to Classification

So one way to tackle the classification problem is by treating the entire problem as a
multi-processor scheduling problem. We have n-processors where n is the number of data fields.
Each processor has m tasks where m is the total number of degree marker sets. The task
length is 4 ∗ σ and the arrival time is the mean. This would look a lot like figure 5, however
each figure would be a processor and each line would be a task.

The issue is that there doesn’t exist (to my knowledge) a polynomial time algorithm for a
multiprocessor system. I could take a modified myopic scheduling approach to the problem,
however this still wouldn’t be guaranteed to work.

5 Short Comings

So there are some short comings to this approach. Firstly, we are designing a classifier for the
discrete angle values. However these are not small increments, these are 15◦ increments. We
reach a catch-22 where small increments means it’s harder to discern between states but larger
increments means there’s a wider margin of unknown. It could be the case that the field we use
to determine 75◦ just so happens to meet the same criteria at 7.5◦. Then when the door is
moving from 0◦ to 15◦, half way it’ll say it’s open to 75◦. I don’t know how to compensate for
this in an efficient manner.

Figure 7: Algorithm Error

Shown in the figure above is what I’m expecting the error to look like. Very close to the degree
marker, we’re going to see very small error, however this is going to grow significantly as we
move away from it. We could mitigate this to some degree by using a method mentioned
earlier, essentially we only change our prediction when we calculate a very high confidence that
we’re at a certain degree marker.

This algorithm only works under the assumption that there are discrete fields (fields with no
overlap with other fields) for each given degree marker set, or that we can recursively look for
relations that provide locally discrete fields (in figure 6, the second line would be an instance of
a locally discrete field). I don’t know the data well enough to state whether this is true or not.

10

6 CONCLUSION

6 Conclusion

Assuming you’ve made it to this point, you should now understand that the ”hard problem” is
developing an algorithm to pick fields to look for each degree marker set. While I feel like the
overall approach is straight forward and logical, it may prove difficult to translate to code.
Considering I still don’t know how to articulate the process in English, I feel like this may be a
complex problem with no ”good” answer.

11

	Preface
	Background
	The End Goal (a.k.a The Problem that Needs a Solution)
	The Current Approach
	The Problem (Or What I Think the Problem is)

	The Algorithm
	Introduction
	Getting the Variance of Our Data
	Classification (a.k.a The Hard Problem)
	Conclusion/Summary

	Approaches to Classification
	Short Comings
	Conclusion

